The Effect and Mechanism of Transdermal Penetration Enhancement of Fu's Cupping Therapy: New Physical Penetration Technology for Transdermal Administration with Traditional Chinese Medicine (TCM) Characteristics.

نویسندگان

  • Wei-Jie Xie
  • Yong-Ping Zhang
  • Jian Xu
  • Xiao-Bo Sun
  • Fang-Fang Yang
چکیده

BACKGROUND In this paper, a new type of physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics is presented. Fu's cupping therapy (FCT), was established and studied using in vitro and in vivo experiments and the penetration effect and mechanism of FCT physical penetration technology was preliminarily discussed. METHODS With 1-(4-chlorobenzoyl)-5-methoxy-2-methylindole-3-ylacetic acid (indomethacin, IM) as a model drug, the establishment of high, medium, and low references was completed for the chemical permeation system via in vitro transdermal tests. Furthermore, using chemical penetration enhancers (CPEs) and iontophoresis as references, the percutaneous penetration effect of FCT for IM patches was evaluated using seven species of in vitro diffusion kinetics models and in vitro drug distribution; the IM quantitative analysis method in vivo was established using ultra-performance liquid chromatography-tandem mass spectrometry technology (UPLC-MS/MS), and pharmacokinetic parameters: area under the zero and first moment curves from 0 to last time t (AUC0-t, AUMC0-t), area under the zero and first moment curves from 0 to infinity (AUC0-∞, AUMC0-∞), maximum plasma concentration (Cmax) and mean residence time (MRT), were used as indicators to evaluate the percutaneous penetration effect of FCT in vivo. Additionally, we used the 3K factorial design to study the joint synergistic penetration effect on FCT and chemical penetration enhancers. Through scanning electron microscopy (SEM) and transmission electron microscope (TEM) imaging, micro- and ultrastructural changes on the surface of the stratum corneum (SC) were observed to explore the FCT penetration mechanism. RESULTS In vitro and in vivo skin permeation experiments revealed that both the total cumulative percutaneous amount and in vivo percutaneous absorption amount of IM using FCT were greater than the amount using CPEs and iontophoresis. Firstly, compared with the control group, the indomethacin skin percutaneous rate of the FCT low-intensity group (FCTL) was 35.52%, and the enhancement ratio (ER) at 9 h was 1.76X, roughly equivalent to the penetration enhancing effect of the CPEs and iontophoresis. Secondly, the indomethacin percutaneous ratio of the FCT middle-intensity group (FCTM) and FCT high-intensity group (FCTH) were 47.36% and 54.58%, respectively, while the ERs at 9 h were 3.58X and 8.39X, respectively. Thirdly, pharmacokinetic data showed that in vivo indomethacin percutaneous absorption of the FCT was much higher than that of the control, that of the FCTM was slightly higher than that of the CPE, and that of the FCTM group was significantly higher than all others. Meanwhile, variance analysis indicated that the combination of the FCT penetration enhancement method and the CPE method had beneficial effects in enhancing skin penetration: the significance level of the CPE method was 0.0004, which was lower than 0.001, meaning the difference was markedly significant; the significance level of the FCT was also below 0.0001 and its difference markedly significant. The significance level of factor interaction A × B was lower than 0.0001, indicating that the difference in synergism was markedly significant. Moreover, SEM and TEM images showed that the SC surfaces of Sprague-Dawley rats treated with FCT were damaged, and it was difficult to observe the complete surface structure, with SC pores growing larger and its special "brick structure" becoming looser. This indicated that the barrier function of the skin was broken, thus revealing a potentially major route of skin penetration. CONCLUSION FCT, as a new form of transdermal penetration technology, has significant penetration effects with TCM characteristics and is of high clinical value. It is worth promoting its development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect and Mechanism of Transdermal Penetration Enhancement of Fu’s Cupping Therapy: A New Physical Penetration Technology for Transdermal Administration with TCM Characteristics

Background: in this paper, a new physical penetration technology for transdermal administration with traditional Chinese medicine (TCM) characteristics Fu’s cupping therapy (FCT) was established and studied by in-vitro and in-vivo experiments; the penetration effect and mechanism of FCT physical penetration technology (FCT-PPT) was preliminarily discussed. Method: Indomethacin (IM) as a model d...

متن کامل

Synergistic Effect and Mechanism of Cineole and Terpineol on In-vitro Transdermal Delivery of Huperzine A from Microemulsions

The aim of the present study was to investigate the influence and the mechanisms of cineoleand terpineol on the in-vitro transdermal delivery of huperzine A from microemulsions, andtheir potential synergistic effect on the permeation enhancement. The transdermal deliveryof huperzine A from microemulsions with different concentrations of cineole and terpineolthrough the rat abdominal skin was de...

متن کامل

Synergistic Effect and Mechanism of Cineole and Terpineol on In-vitro Transdermal Delivery of Huperzine A from Microemulsions

The aim of the present study was to investigate the influence and the mechanisms of cineoleand terpineol on the in-vitro transdermal delivery of huperzine A from microemulsions, andtheir potential synergistic effect on the permeation enhancement. The transdermal deliveryof huperzine A from microemulsions with different concentrations of cineole and terpineolthrough the rat abdominal skin was de...

متن کامل

Development of Bioadhesive Transdermal Bupivacaine Gels for Enhanced Local Anesthetic Action

    Topical drug dosage forms such as ointments and creams can be easily removed through wetting, movement and contact. The new bioadhesive formulations with enhanced local anesthetic effects are needed for topical administration. The adhesive capacity of hydroxypropyl methylcellulose (HPMC) was determined by measuring the maximum detachment force and the adhesion work with an auto peeling test...

متن کامل

Development of Bioadhesive Transdermal Bupivacaine Gels for Enhanced Local Anesthetic Action

    Topical drug dosage forms such as ointments and creams can be easily removed through wetting, movement and contact. The new bioadhesive formulations with enhanced local anesthetic effects are needed for topical administration. The adhesive capacity of hydroxypropyl methylcellulose (HPMC) was determined by measuring the maximum detachment force and the adhesion work with an auto peeling test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2017